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Diffusion in oscillatory pipe flow 

By E. J. WATSON 
Department of Mathematics, University of Manchester 

(Received 13 July 1982 and in revised form 16 April 1983) 

The rate of mass transfer of a diffusing substance along a pipe is augmented by an 
oscillatory motion of the ambient fluid in the pipe. The increase of the flux is 
evaluated for the cases of a circular pipe and of a two-dimensional channel. Results 
are given for a general cross-section in the limiting cases of slow and fast oscillations 
of the flow. 

1. Introduction 
Taylor (1953) showed that, when a small quantity of a diffusing substance is 

introduced into a fluid flowing along a circular pipe, the ultimate spreading of the 
resultant cloud of the substance is enhanced by the flow of the fluid. This is due to 
the variation of the velocity of flow over the cross-section of the pipe, which causes 
transverse diffusion to be effective in dispersing the cloud. 

A similar effect occurs when the flow is oscillatory, as pointed out by Bowden (1965). 
It will be shown that a solution of the concentration equation can be obtained if there 
is, on average, a uniform gradient of concentration along the pipe, which can have 
arbitrary cross-section. A special case of this (details of which are given in $4) was 
studied by Farrell & Larson (1973). The resultant flux of the diffusing substance 
depends on this cross-section, and can be evaluated analytically for any frequency 
of oscillation if the pipe is circular, or if it  is a two-dimensional channel. It is also 
possible to study the general behaviour of the flux for an arbitrary cross-section in 
the limiting cases of slow and fast oscillations of the flow. 

The results given here have already been used by Chatwin (1975). Experiments 
described in the companion paper (Joshi et al. 1983) show good agreement with the 
present theory. 

2. General theory 
It will be assumed that the diffusing substance is a passive contaminant, of which 

the concentration is so small that  the physical properties of the fluid and the 
diffusivity K of the contaminant may be taken as constant. The flow is assumed to 
be entirely in the z-direction, and to take place within a pipe of uniform cross-section 
S ,  which is bounded by the curve B. The pressure gradient 

-- ap - -Pcoswt 
a Z  

gives rise to a velocity distribution 

where 
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f = O  o n B .  
with 

Here p and v are the density and the kinematic viscosity of the fluid. 
The concentration e ( x ,  y, z ,  t )  of the contaminant satisfies 

ae ae 
at az - + w- = KV20 in S ,  

= O  o n B ,  
ae with 
- 
an 

(4) 

since the pipe is assumed to  be impermeable. Here a / &  denotes the rate of change 
in the outward normal direction. Equations ( 5 )  and (6) have a solution of the form 

e ( x ,  y, 2, t )  = -yz+ Re {yg(z, y) eiw7, 

iwg- f = KV2g in S, provided that 

and 
-- ' 9  - 0  on B. 
an (9) 

The rate of flux of the contaminant across any plane z = constant is 

fjs {we - K g} dx dy = jIs [Q( f eiWt +feCiwt) { - yz + b ( g  eiwt + ge-iwt)) + KY]  dz dy, 

(10) 
where the bars denote complex conjugates. The mean rate of flux is therefore 

I n  the absence of any flow this would be K ~ A ,  where A is the area of the cross-section 
S.  The effective diffusivity in the oscillating flow is thus 

K = K (  1 + R), (12) 
where 1 R = -jj ~ K A  (fg++fs)dxdy. 

The oscillatory components of frequency 2w in the flux were studied by Chatwin 
(1975). 

The relative increase R of the flux can also be expressed in terms of a line integral 
round the boundary B of the cross-section S. The differential equations (3) and (8) 
show that 

P - iw iw 1 P2 qvy- (f + $) v2q- - vy = (y + ;) fg + ; 1 f 12 + w2p2v. 
W 2 P  

By applying Green's theorem, combined with the boundary condition (9), to the 
imaginary part of (14), we find that 

where 

is the Schmidt number, 
ff = V / K  

h = P/w", 

and s is the arclength round the boundary B. 
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Another useful form for R can be obtained from (13) by elimination off  and f 
1 through (8). Thus 

R = -Is (-gV2g-gV2g)dxdy 
4 A  s 

4 P P  

='JJ (gradg) (grad g) dx dy 
2 A  s 

from the divergence theorem and the boundary condition (9). Hence 

which shows that R is always positive. 

by the equations 
It is convenient to express the functions f(x, y) and g(x, y) in dimensionless forms 

(19) 
iP 

UP 
f(x, y) = -{F(x,y)- 11, 

g(x, y) = A{G(x, y) - 11. 

iw Then 
V 2 F = - F  i n s ,  F = l  o n B ;  

V 

= 0 onB.  (22 )  
iw aG 

V2G=-((C-F) i n s ,  - 
K an 

I n  terms of F and G, the formulae (15) and (18) become 

P= aP - a  f ,  { 'C?n + 4 ds' 
R =  

4(1 + g - l ) w 4 p 2 A  

where the integrals are non-dimensional. 
The amplitude of oscillation of the flow has been described so far by that of the 

pressure gradient, but i t  may also be expressed in terms of the tidal volume; the rate 
of working of the pressure gradient, which is equal to the rate of dissipation per unit 
length of the pipe, is also of interest. The instantaneous flux across any cross-section 
of the pipe is I[ wdxdy = Re{$jJ (F-1)dxdyeiut 

s S 

The tidal volume may therefore be defined as 

=XI iv[ E d s ( .  
W 2 P  .an 

The rate a t  which work is done by the pressure per unit length of the pipe is 

J J wP cos wt dx dy, 
s 
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so that the mean rate of working is 

W = (F-@dzdy 

="s (-+%)ds. aF aF 
4WP s 

402p an 

The formulae (24) and (26) show that typically 

PA 
V'--, 

u4p2d2 ' W 2 P  

P2 
RK-  

where d is a characteristic distance across the pipe. Thus, for a given shape of the 
cross-section S of the pipe, we can write 

where the function f s  depends on the shape of AS as well as the dimensionless frequency 
d 2 0 / v  and the Schmidt number u. I n  $3 we shall study the behaviour of this function 
for small and large values of the frequency parameter, and for large values of the 
Schmidt number. Section 4 will give explicit results for the cases of a two-dimensional 
channel and a circular pipe. 

3. Asymptotic forms 
When o+O we can look for regular perturbation expansions 

Then V2Fo= V2Go = O  i n s ,  Fo= 1, -- - 0  o n B ;  (33) aG0 
an 

and for r >, 1 

F, = - = O  aGr o n B .  
an 

(34) 

The equations given for G, do not determine it uniquely, but we must have, for all 
r >, 0, Is, (Cr-q)dzdy = 0 (35) 

in order to be able to  solve for G,,,. 
From (33) and (35) we find that 

F o = G o = l .  

VzFl = 1 i n s ,  F,=O o n B .  Hence 
(36) 

(37) 

This problem is equivalent to that for steady flow through the pipe. When P, has 

(38) 
been determined we have 

where 
Gl = - L l / A ,  
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If r 3 2, G, is a polynomial in u of the form 
r-1 

where G,, is a constant. In particular, G,, satisfies 

Equation (24) now gives 

p2 
R=- 2aIj { g (FygradG,}-{ (-FygradG,}dzdy 

~ W P  s r - 2  7 - 2  

(grad G,), dx dy + O(w2) 
P2 -- - 

This can be transformed by the divergence theorem to give 

237 

(40) 

Although G,, is not completely defined by (41), the unknown additive constant is 
irrelevant. 

2P 

W P V  

When w+0,  (25) gives 
v = - { L , + 0 ( w 2 ) } ,  

so that 

(43) 

The functions F, and G,, are proportional to dZr ,  where d is the typical distance across 
the pipe. Hence (44) shows that 

as w+O, where Cs is a number depending only on the shape of the cross-section S. 
In the case w+ CO, F and G are exponentially small except in a boundary layer 

on the wall of the pipe. If we assume that the boundary B of the cross-section S has 
continuous slope and curvature k(s) ,  reckoned positive if the cross-section is convex, 
we can write 

where n < 0 in the interior of the pipe. The appropriate boundary-layer variable is 

where 6 is a measure of the boundary-layer thickness, and then 

The asymptotic solution of (48) as w+ 00 is 

F = F(O)+SF(l)+ ..., 
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where 

and it means l / t (  1 + i). Similarly we find that 

FCO) = e-&, F(1) = ]ik&-i'5, (50) 

where 

where I is the length of the perimeter of the cross-section. It also follows from (26) 
that  the tidal volume is 

12 

V2 

A3 ' 

1 - - 7 C + - + O ( w - ~ )  
(;vy A - 

so that 

8(1+ u-l)  ( 1  + u-4) 
R =  

Equation (56) implies that a t  high frequency we have 

1 Id d ( w / v ) t  
f s  w s 2 / 2 ( 1 + a - ' ) ( l + u - t ) '  (57 1 

The results given for W+OO are not valid if the boundary B of the cross-section 
has corners, since there will then be boundary regions at the corners, and these will 
need separate treatment. 

The Schmidt number u is large for diffusion in a liquid. It is therefore appropriate 
to consider the case in which wd2/K  is large but wd2/w is not. The equation for F(x,  y) 
must be solved first, and then 

(58) 
Cr 

G(X> Y) = xtF(zj Y) 

in the interior of the pipe. The concentration distribution has a boundary layer, which 
is described by the variable 

(59) 

and in this boundary layer 

G ( z , y )  = To(s,r)+ ( ; ) h s , T ) + . * *  

In  the boundary layer we can expand F(x ,  y) as 



Diffusion in oscillatory pipe $ow 

and then we find that 

Hence from (23) 
r,= 1, r, = -  

If further d 2 W / v  + 1, we can use the expansion (29) to obtain 

from which 
V2 

R - -  
8Ll A 

4. Special cases 

two-dimensional channel, and when the cross-section is circular. 
The functions F and G can be found explicitly in two cases: when the pipe is a 

For the channel - h < y < h we have 

where 

andi fc r=  1 
C(y) = 4 sech h*((h* coth h* + 1) cosh y* - y* sinh y*>. (68') 

The relative increase of flux can then be calculated from (23). With 

p = h ( F ) ' ,  

the result can be simplified to 

provided that (i 4 1, where 
sinh p - sin /3 

'(" = /3 (cosh /3 - cos p) 
The tidal volume per unit breadth of the channel is 

so that 
2 sinhp+sinp 2 coshp-cosP P2h10 

vt=- ::{ 1-- pcoshp+cosp +- p2coshp+cosP I- p2v4 ' (72) 

In terms of the tidal volume we therefore have (for (i =+ 1) 

R =  V4(coshp- C O S ~ )  ' ( A  - ' ( P 4  
p2(cosh p+ cosp) - 2/3(sinh p+ sinp) + 2(cosh /3 - cosp)  1 - c2 (2h)4 ' 

(73) 
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When p+O 
so that 

Also 

5a2 + 82 P h 6  R=- 1 -  
945 { 1980 

Ph1° v: = y{p-4- 6 +o(p4))- 
p2v4 ' 

and therefore 

69300 (77) 

which gives the limiting form 

R - L ( @ ) '  1680 K ' (78) 

For the high-frequency case we have 

G(P) = ,P1(l+ O(e-P)> 
as 8- 00. This gives - 

4p- 7 P h 6  R- 
( 1  + a-1) ( 1  + a-4) p2v4 

- P3 v: 
4(p2-2p+ 2) ( 1  + g-') (1 +a-;) (2h)4 ' 

where in each case the error is exponentially small as p+ CO. If p+O but /3d+ 00 

we have 

The case a = 1 can be treated either directly from (68') or as a limit from (70). 

and the corresponding expression in terms of V, can be derived from this. 
In  the case of the circular pipe we take the boundary B as 

Then 

where 

and I, is the Bessel function. When a + 1 

a 
G(z, y) = G ( r )  = - 

u-1 
and when a = 1 this becomes 

(84) 

(85) 
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U = V / K  

a = a(: l  
0.1 1 10 100 1000 

0.1 2.64,--10 2.64,-8 2.64,-6 2.63,-4 1.82,-2 
0.2 4.22,-9 4.22,-7 4.22,-5 3.94,-3 5.65,-2 
0.5 1.65,-7 1.65,-5 1.60,-3 4.50,-2 8.32,-2 

1 2.64,-6 2.62,-4 1.82,-2 7.28,-2 9.23,-2 
2 4.15,-5 3.87,-3 5.60,-2 8.76,-2 9.79,-2 
5 1.04,-3 3.27,-2 9.19,-2 0.120 0.130 

10 4.26,-3 5.46,-2 0.152 0.198 0.213 
20 8.55, - 3 9.93, - 2 0.275 0.358 0.385 
50 2.04, -2 0.233 0.645 0.840 0.905 

100 3.99, -2 0.457 1.26 1.65 1.77 
b, q denotes p x lo*.] 

TABLE 1. Values of R a O / P  

The increase in mass flux, again calculated from (23), can be expressed most 
conveniently in terms of the variable 

and the Kelvin functions defined by 

Let 

a = a(:y (88) 

I,(aii) = ber (a) + i bei (a). 

B(a) = ber2 (a) + bei2 (a), 

(89) 

(90) 

Then if u + 1 

a3B(a) 
B‘(a) ’ 

B1(a) = ~ 

1 -B2(a) /B2(ad)  P a 6  
2( 1 - a-2) a4B1(a) p2v4 . R =  

4n2B3(a) P a l 2  The tidal volume is given by 
v2 = 

a4B1(a) p2v4 ’ 

(93) 

(94) 

(95) 
a3B(a) +B’(Lx) -aB”(a) -a2B”’(a) where 

&(a) = u4B’( a) 
Thus 

The corresponding expressions for the case u = 1 can be obtained either directly from 
(87’) or by use of the fact that  

Values of Ra6/V2 are given in table 1 for various values of a and u. These were 

(98) 
- (ga)4n 

computed from the series 

B(a)  = z,, ( n  ! )2  (2n) ! 
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and the asymptotic form as a+ a 

4 2  2 5 4 2  13 
8a 384u3 64a4 

4 2  u+ ~ - ___ - - + ...) 199) 

(see Watson 1944, $$5.41, 7.24). These expressions can also be used to study the 
behaviour of R for small and large values of a. 

When a+O we find from (98) that  

cT4 a4 +  as)} p2v4 
2880 

1 -  
6144 

13a2+3 V2 
2880 a6 

a4 + o(asij - 

When a+ "o, the asymptotic formula (99) gives 

2/2-aa-1+0(a-2) P a 6  R =  
2a7( 1 + c ~ - 1 )  (1 + c ~ - 4 )  p2v4 

- a + i 4 2 + O ( a - ' )  V2 - 
4 4 2  ~ ~ ( l + c ~ - ~ ) ( l + d ) a 6 '  

The case treated by Farrell & Larson (1973) is that  of a circular pipe in which the 
oscillations are slow, so that the velocity profile approximates to  that of steady flow, 
but the diffusivity K is small. The parameter characterizing this problem is 
a ( w / K ) i  = ad. When u+O in (96) with acri remaining fixed 

and the leading term of this expression agrees with the result of Farrell & Larson. 
I n  the limit when acT?+a, but a+O, we have 

It may be verified that the asymptotic forms, both for the channel and for the circular 
pipe, agree with the general results of $3. 

5. Conclusion 
When there is, on average, a linear gradient of the concentration of a passive 

contaminant in an oscillating flow in a pipe, the effective diffusivity of the contaminant 
is 

where the relative increase R is of the form 
K =  K ( ~ + R ) ,  (12) 

Here the dimensionless forms of the frequency w and the tidal volume V involve d ,  
a typical distance across the pipe. As in Taylor's problem of steady flow, when a small 
quantity of the diffusing substance is introduced into the pipe, the later stages of the 
dispersion of the substance will be governed by the diffusivity K .  The dispersion of 
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the contaminant a t  earlier times presents a more difficult problem, which has recently 
been studied by Smith (1982)  as a delay-diffusion process. 

The function fs, which depends on the shape of the cross-section S as well as the 
dimensionless frequency and Schmidt number, increases with frequency, ultimately 
as its square root. The flux of the contaminant can therefore be increased significantly, 
for given tidal volume, by the use of a high frequency of oscillation. The price for 
this is that  the work done by the pressure gradient also increases with frequency. It 
follows from ( 2 7 )  and (28 )  that a t  low frequency the mean rate of working 

whereas for high frequencies 

where L, is defined in ( 3 9 )  and 1 is the length of the perimeter of the cross-section. 
The energy thus produced is dissipated throughout the pipe a t  low frequency, but 
only in the boundary layer at high frequency. This corresponds to the fact that  the 
increase of flux arises from the whole flow a t  low frequency, but only from the 
boundary layer a t  high frequency. 

Experiments by Joshi et al. (1983) ,  carried out on the diffusion of methane in air 
in a circular pipe, have confirmed the prediction that R is proportioned to  V 2 .  They 
also give reasonable agreement with the computed variation of the function fs with 
frequency. Numerical and experimental studies have been made by Stairmand ( 1983) 
for the case of a flat channel, and these also confirm that R is proportional to V 2 .  

Dispersion in oscillatory flow is important in many practical cases, ranging from 
tidal flow in estuaries to respiratory flow in the airways of the lungs. I n  many cases 
a steady component is also present in the basic flow. When the pressure gradient is 

aP - = -Pcoswt-PP,, ax 
the velocity distribution at large times is 

where e ( x ,  y) is defined by ( 3 7 ) .  The mean volume flux is therefore 

Equation ( 7 )  must be replaced by 

where 
8 = -y.Z+Re(ygeiut>+h(x, y), 

Qt 
A ’  

z =  2-- 

The flux of the contaminant across the moving plane .Z = constant is 
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and the mean value of this is 

Hence the effective longitudinal diffusivity is now 

where 

If there is no oscillatory component of the flow, we recover the result of Taylor’s 
theory. Thus (116) shows that the effects of steady flow and oscillatory flow are 
additive. It will be observed that (44) shows that in the case of slow oscillations of 
the flow R --(-TB,, 1 w v  

8 Q  

a result which generalizes that of Bowden (1965) for simple shear flow. 

I am grateful to the referees of this paper for helpful suggestions. 
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